Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 762: 143056, 2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-864865

ABSTRACT

The COVID-19 pandemic has had a profound impact on human society. The isolation of SARS-CoV-2 from patients' feces on human cell line raised concerns of possible transmission through human feces including exposure to aerosols generated by toilet flushing and through the indoor drainage system. Currently, routes of transmission, other than the close contact droplet transmission, are still not well understood. A quantitative microbial risk assessment was conducted to estimate the health risks associated with two aerosol exposure scenarios: 1) toilet flushing, and 2) faulty connection of a floor drain with the building's main sewer pipe. SARS-CoV-2 data were collected from the emerging literature. The infectivity of the virus in feces was estimated based on a range of assumption between viral genome equivalence and infectious unit. The human exposure dose was calculated using Monte Carlo simulation of viral concentrations in aerosols under each scenario and human breathing rates. The probability of COVID-19 illness was generated using the dose-response model for SARS-CoV-1, a close relative of SARS-CoV-2, that was responsible for the SARS outbreak in 2003. The results indicate the median risks of developing COVID-19 for a single day exposure is 1.11 × 10-10 and 3.52 × 10-11 for toilet flushing and faulty drain scenario, respectively. The worst case scenario predicted the high end of COVID-19 risk for the toilet flushing scenario was 5.78 × 10-4 (at 95th percentile). The infectious viral loads in human feces are the most sensitive input parameter and contribute significantly to model uncertainty.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Pandemics , Risk Assessment
2.
Sci Total Environ ; 744: 140980, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-654955

ABSTRACT

The ongoing COVID-19 pandemic is, undeniably, a substantial shock to our civilization which has revealed the value of public services that relate to public health. Ensuring a safe and reliable water supply and maintaining water sanitation has become ever more critical during the pandemic. For this reason, researchers and practitioners have promptly investigated the impact associated with the spread of SARS-CoV-2 on water treatment processes, focusing specifically on water disinfection. However, the COVID-19 pandemic impacts multiple aspects of the urban water sector besides those related to the engineering processes, including sanitary, economic, and social consequences which can have significant effects in the near future. Furthermore, this outbreak appears at a time when the water sector was already experiencing a fourth revolution, transitioning toward the digitalisation of the sector, which redefines the Water-Human-Data Nexus. In this contribution, a product of collaboration between academics and practitioners from water utilities, we delve into the multiple impacts that the pandemic is currently causing and their possible consequences in the future. We show how the digitalisation of the water sector can provide useful approaches and tools to help address the impact of the pandemic. We expect this discussion to contribute not only to current challenges, but also to the conceptualization of new projects and the broader task of ameliorating climate change.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2 , Water
SELECTION OF CITATIONS
SEARCH DETAIL